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ABSTRACT
The goal of phylogenetic inference is to find an evolutionary tree which best ex-
plains the ancestral history of some set of taxa (species); this is done using some
data such as a DNA sequence alignment. Flattenings—matrices constructed using
site-pattern counts from an alignment—provide a way of identifying ‘true’ splits
and hence the true evolutionary tree via the evaluation of their rank. The size
of these matrices, exponential in the number of taxa, introduces a computational
challenge. This challenge led to the development of so-called subflattenings, which
exhibit analogous rank properties but have smaller dimensions (quadratic in the
number of taxa). The construction of subflattenings involves representation the-
ory and the application of a similarity transformation in which some choices are
involved.
We provide some background and a short survey of the literature related to split
and rank-based methods for phylogenetic inference. We then explore algebraic
concepts involved in the construction of these matrices, providing some proofs
and defining (r, c)-subflattenings. We also provide the results of some simulations
undertaken to evaluate practical implications of some possible choices in the con-
struction of subflattenings. Finally, we outline some key points of interest for
future research.
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Introduction

Phylogenetics is an area of biology which incorporates mathematical concepts,
from fields like statistics, probability theory and algebra, in the development of
models and methods that allow biologists to uncover the evolutionary history of
present-day species. This process is called phylogenetic inference. The aim of
phylogenetic inference is to effectively and efficiently process biological data—
for example, sequences of DNA, amino acids, codons or proteins—and produce
a phylogenetic tree, or phylogeny. The resulting phylogenetic trees are graphical
representations of the evolutionary relationships between species, in terms of their
common ancestors. The textbooks [15] and [25] serve as introductions to many of
the concepts arising in phylogenetics.
In this thesis, we will investigate split and rank based methods and tools for
phylogenetic inference, provide some new proofs for related results and introduce
some new definitions. We aim to provide insight into these tools and methods
from both practical and algebraic perspectives, as well as examine them through
the use of simulations and analysis on real data sets.
In Chapter 1, we provide some necessary mathematical preliminaries. Chapter 2
is dedicated to a review of the current literature relevant to the topics explored
in this thesis. Some definitions, theorems and examples which will be useful in
the subsequent chapters are also included. Chapters 3 and 4 are theoretical in
focus, covering flattenings and subflattenings, including details of their construction
and their useful properties. Here we provide new proofs and definitions, along
with some discussion and examples. Chapter 5 details simulations undertaken
to evaluate subflattenings constructed in various different ways. We discuss the
results of these simulations, and examine the performance of these subflattenings
on some real DNA data sets. The final chapter is a broad discussion of the research
outcomes, alongside some points of interest for future research.
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Chapter 1

Preliminaries

Throughout this thesis we will assume some knowledge of basic linear algebra,
for example the definition of a vector space and the definition of span, as well as
basic group theoretic concepts, such as the definition of a group. Included in this
chapter are a selection of items which will be of use later, particularly in Chapters
3 and 4. The examples in this chapter also help to motivate subsequent chapters.

1.1 Matrices and the Kronecker Product

Definition 1.1.1 (Matrix Rank). The rank of a matrix A is the number of linearly
independent rows, or equivalently, the number of linearly independent columns. In
particular, the rank of A is the dimension of the subspace spanned by its rows (or
equivalently by its columns).

Lemma 1.1.2 (Determinant properties). The matrix determinant det has the
following multiplicative property for n× n matrices A, B:

detA detB = det(AB).

We also have
det(A) = det(AT ),

where AT is the transpose of A, and,

det(D) = d1d2...dn,

where D is a diagonal matrix, with diagonal entries d1, d2, ..., dn.

2



1.1. MATRICES AND THE KRONECKER PRODUCT 3

Lemma 1.1.3. Let M be an n×n matrix with det(M) ̸= 0. Then, M is full-rank.
That is, rank(M) = n.
Definition 1.1.4. Let A be an m × n matrix and let B be a p × q matrix, the
Kronecker product of A and B is defined as the block matrix,

A⊗B =

A1,1B . . . A1,nB
... . . . ...

Am,1B . . . Am,nB

 ,

where Ai,j is the (i, j)-th entry of A. The result is a (mp × nq) matrix, but is
(m× n) when considered as a block matrix. More concisely, we have

(A⊗B)I,J = Ai1,j1Bi2,j2 ,

where I and J are ordered pairs and it and jt are the t-th entries of I and J
respectively. Here we are indexing the rows of (A⊗B) by lexicographically ordered
collection of pairs

(I = (a, b) : a ∈ {1, ...,m}, b ∈ {1, ..., p}) ,

and columns by the ordered collection of pairs

(J = (a, b) : a ∈ {1, ..., n}, b ∈ {1, ..., q}) .

Associativity of the Kronecker product allows us to extend this indexing and nota-
tion to Kronecker products of any number of matrices. We simply include more
entries in the tuples I and J .

We will frequently adopt the indexing notation defined in Definition 1.1.4.
For two block matrices, taking the Kronecker product as defined here involves
ignoring the block partitioning of each matrix. The following result appearing
in [28] and—from a different perspective—in [17], allows us to more easily take
Kronecker products of block matrices.
Theorem 1.1.5. Let A and B be (m× n) and (p× q) block matrices, and denote
the (i, j)-th block of A or B by Ai,j or Bi,j respectively. Let M be a matrix with
block entries given by

MI,J = Ai1,j1 ⊗Bi2,j2 ,

where I and J are ordered pairs and it and jt are the t-th entries of I and J
respectively. Then, we have that:

A⊗B is permutation similar to M.
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That is, A⊗ B can be obtained from M by simultaneous row and column permu-
tations.
Proof. Proofs of this theorem are given in [28] and [17]. ■

Markov matrices are matrices which are often used to represent probabilities of
changes between some number of states. We define Markov matrices formally, and
discuss their use in phylogenetics in more detail in Chapter 2.

Definition 1.1.6 (Markov Matrix). A matrix M is a Markov matrix, transi-
tion matrix, or substitution matrix if its entries are all values in the range
[0, 1], and each of its columns sum to 1.

Note that some authors instead choose to define Markov matrices as having their
rows sum to 1, instead of columns. In either case, it is easy to see that the set
of Markov matrices are closed under matrix multiplication. Formally, the set of
Markov matrices form a semigroup. In fact, if we relax the restriction that matrix
entries must lie between 0 and 1, and restrict to non-singular matrices, these
matrices form a group [24].

1.2 Groups and Representations

We recall the definition of a group homomorphism, and the definition of the general
linear group.

Definition 1.2.1 (Homomorphism). Let G,H be groups. A homomorphism is
a map ρ : G → H which satisfies,

ρ(g1g2) = ρ(g1)ρ(g2)

for all g1, g2 ∈ G.

Definition 1.2.2 (General linear group). The general linear group GL(n,R)
or GL(Rn) is the group of n×n invertible matrices with real entries, under matrix
multiplication. More generally, if V is a finite dimensional vector space, GL(V )
is the group of dim(V ) × dim(V ) invertible matrices, isomorphic to the group of
bijective linear transformations V → V .

We also define the affine group, which has relevance in Chapter 4 and will be used
within examples below.
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Definition 1.2.3 (The affine group). The affine group Aff(n) is the collection
of pairs (M, v), where M is an n×n matrix and v is an n × 1 column vector.
Multiplication in the group is given by

(M1, v1)(M2, v2) = (M1M2,M1v2 + v1),

for pairs (M1, v1), (M2, v2) ∈ Aff(n).

The affine group is related to Markov matrices [20]. If we take a matrix S which
is invertible and has a constant row, then the below similarity transformation of a
Markov matrix M gives the matrix

SMS−1 =

[
T u
0 1

]
,

where T is an (n−1) × (n−1) matrix and u is a (n−1) × 1 column vector. The
matrix above is obtained by choosing S to have its constant row as the last row,
however regardless of the choice, the resulting matrix will be permutation similar
to the one shown above. One can verify the above transformation by considering
the restrictions on the matrices. Suppose S has a constant final row, then the unit
column sums in M mean we have the final row of SM equal to the final row in S.
From here, we see that the final row of (SM)S−1 is the final row of the identity
matrix. The correspondence between the above matrix and the affine group is
clear, since (T, u) ∈ Aff(n−1). If we again relax the restriction that every entry
in our Markov matrices must lie between 0 and 1, we can obtain every element
in Aff(n−1) in this way. Additionally, multiplication of the transformed matrices
agrees with the multiplication in Aff(n−1), since,[

T1 u1

0 1

] [
T2 u2

0 1

]
=

[
T1T2 T1u2 + u1

0 1

]
,

which, in the same way, corresponds to (T1T2, T1u2 + u1) ∈ Aff(n − 1), which is
the product of (T1, u1) and (T2, u2) in Aff(n− 1). Formally, this correspondence is
what is known as a matrix representation of the group.
Definition 1.2.4 (Matrix representation). Given a group G, and a homomorphism

Φ : G → GL(Rn),

we say that (Φ,Rn) is a representation of G on Rn. Additionally, we say that
the representation is faithful if the homomorphism Φ is injective.
Definition 1.2.5 (Subrepresentation). Let (Φ,Rn) be a representation of G on Rn.
A subrepresentation of (Φ,Rn) is a pair (Φ|V , V ), such that V is a G-invariant
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subspace of Rn. That is, we have

Φ(g)(v) ∈ V,

for all g ∈ G and v ∈ V , where Φ(g)(v) indicates the group action of Φ(g) on
v. Note that the group action here can be left or right matrix multiplication into
column or row vectors respectively. The above property allows us to denote Φ|V as
the induced map,

Φ|V : G → GL(V ),

taking group elements to the relevant submatrices of matrices in the image of Φ.
One can show that a subrepresentation of a group G is itself a representation.

To provide an example of a subrepresentation of the affine group, we first need to
define the direct product; a way to construct larger groups from smaller ones.

Definition 1.2.6 (Direct product). Let G and H be groups. The direct product
of G and H, denoted G×H, is the set,

G×H = {(g, h) : g ∈ G, h ∈ H},

with multiplication given by

(g1, h1)(g2, h2) = (g1g2, h1h2).

One can easily see that G × H is itself a group. We also define the n-fold direct
product of a group G with itself to be the set,

×nG = {(g1, ..., gn) : gi ∈ G}.

along with the analogous definition of multiplication.

Example 1.2.7. We previously discussed a correspondence between the affine
group and the transformed Markov matrices, and mentioned that that correspon-
dence is formally referred to as a representation. Formally, this representation of
Aff(n) is given by the map ρ : Aff(n) → GL(n+ 1,R), defined via,

ρ((M,u)) :=

[
M u
0 1

]
∈ GL(n+ 1,R).

Now, consider the direct product of the affine group with itself,

G := Aff(n)× Aff(n).
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We have a related representation of this group; the map

Φ : Aff(n)× Aff(n) → GL((n+ 1)2,R),

defined using the Kronecker product,

Φ (((M1, u1), (M2, u2))) :=

[
M1 u1

0 1

]
⊗
[
M2 u2

0 1

]

=


M1 ⊗M2 M1 ⊗ u2 u1 ⊗M2 u1 ⊗ u2

0 M1 0 u1

0 0 M2 u2

0 0 0 1

 .

One can verify that the map Φ is a homomorphism.

Consider the following subspace of R(n+1)2 defined by,

V := {(0, ..., 0, λ1, ..., λ2n+1) : λi ∈ R} ∼= R2n+1,

that is, each vector in V is a row-vector with zeroes in the first n2 locations. We
see that for g ∈ G and v = (0, ..., 0, λ1, ..., λ2n+1) ∈ V , we have

Φ(g)(v) = vΦ(g)

= (0, ..., 0, λ1, ..., λ2n+1)


M1 ⊗M2 M1 ⊗ u2 u1 ⊗M2 u1 ⊗ u2

0 M1 0 u1

0 0 M2 u2

0 0 0 1


= (0, ..., 0, γ1, ..., γ2n+1) ∈ V,

for some γi ∈ R. That is, V is G-invariant, and thus we have a subrepresentation
(Φ|V , V ), with

Φ|V (g) =

M1 0 u1

0 M2 u2

0 0 1

 ∈ GL(2n+ 1,R).

One can easily verify that this class of matrices provides a representation of Aff(n)×
Aff(n). It should also be apparent that this representation is faithful.

A non-faithful representation which maps group elements to the matrix with a
single entry ‘1’ is obtainable in a similar way, by selecting V to be a particular
subspace of R(n+1)2 isomorphic to R:
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Example 1.2.8. Again, consider the homomorphism ρ : Aff(n) → GL(n + 1,R)
defined via

ρ((M,u)) :=

[
M u
0 1

]
∈ GL(n+ 1,R),

giving a representation of Aff(n). Consider the subspace U = span{(0, ..., 0, 1)} ∼=
R of Rn+1. We see that

Φ(g)(v) = vΦ(g) = (0, ..., 0, λ)

[
M u
0 1

]
= (0, ..., 0, λ) ∈ U.

That is, U ∼= R is an Aff(n)-invariant subspace and we have a subrepresentation
(Φ|U ,R), with

Φ|U(g) = (1) ∈ GL(1,R).

These representations of direct products of copies of the affine group will appear
again in later chapters.

1.3 Singular Value Decomposition

Definition 1.3.1. A singular value decomposition of a real-valued m × n
matrix M is the factorisation

M = UΣV T ,

where U is an orthogonal m×m matrix, V is an n× n orthogonal matrix, and Σ
is a rectangular diagonal matrix with non-negative entries. We have,

diag(Σ) = (σ1, ..., σmin{m,n}),

and refer to σ1 ≥ ... ≥ σmin{m,n} ≥ 1 as the singular values of M .

Unless otherwise stated, here σi will always refer to the i-th largest singular value
when the corresponding matrix is apparent from context. We will now define a
matrix norm which is related to singular values.
Definition 1.3.2. The Frobenius norm, ∥A∥F of an m×n matrix A is defined
by,

∥A∥F =

√√√√ n∑
j=1

m∑
i=1

A2
i,j =

√√√√min{m,n}∑
i=1

σ2
i .

The Eckart–Young–Mirsky theorem, provided in [9], relates singular values to the
Frobenius distance between any matrix and its closest rank-k matrix.



1.3. SINGULAR VALUE DECOMPOSITION 9

Theorem 1.3.3 (Eckart–Young–Mirsky Theorem). Let M be a matrix with rank(M) ≥
k. The distance to the closest rank-k matrix to M under the Frobenius norm is
given by

min
A : rank(A)=k

∥M − A∥F =

√√√√min{m,n}∑
i=k+1

σ2
i ,

where σi are the singular values of M .
Proof. The proof is provided in [9]. ■



Chapter 2

Background & Literature Review

2.1 Sequence Data, DNA

Tools used for phylogenetic inference often take as their input, biological data in
the form of sequences; for example, sequences of DNA, codons or amino acids. We
will frequently give examples in terms of DNA sequence data. DNA sequences can
be represented as strings of states from the set of nucleotides S = {A,G,C, T}.
We refer to S as a state space, and throughout we will denote k = |S|. The
states A,G are referred to as purines and C, T as pyrimidines. Some methods and
models in phylogenetics make this distinction (see K2ST in Appendix A), whereas
others treat each state equally (see JC69 in Appendix A), or are independent of
the number of states (for example the general Markov model, which we discuss in
Section 2.3). As a species evolves, parts of its DNA will change. We refer to these
changes as substitutions. The substitutions A ↔ G and C ↔ T—those which take
purines to purines or pyrimidines to pyrimidines respectively—are referred to as
transitions, and all other state changes are known as transversions.
Species which have evolved from a recent common ancestor will share some DNA.
Given some number of species (taxa) and corresponding DNA sequences, one can
align the sequences into a DNA sequence alignment. Note that the process of
constructing a sequence alignment from DNA sequences is itself a difficult problem,
which we do not discuss here (see [15]). An example of a small portion of such
an alignment is given in Table 2.1. We can look at the columns in an alignment
(which we refer to as site-patterns) to see how the DNA sequences differ between
taxa, for example the highlighted site-pattern ‘GTT ’ in Table 2.1 shows that in
this particular place in the alignment, the Gorilla and Chimp DNA sequences share
the pyrimidine T . We say that this provides some small amount of support for
Chimps and Gorillas sharing a most recent common ancestor, however there are

10



2.2. TREES, SPLITS AND MAXIMUM PARSIMONY 11

many more site-patterns to consider. A sequence alignment can be summarised
by counting the frequency of each of the kn possible site-patterns (where n is the
number of taxa). Dividing each pattern count by the sequence length gives the
proportion of each pattern within the alignment (see Table 2.1). One can imagine
that these proportions are estimates for the probability of observing each pattern
in an alignment with infinite length.

Taxon Characters
Human ... A A G G T - ...
Gorilla ... A A G T T C ...
Chimp ... A - G T T A ...

Pattern Frequency
AAA 12
GGG 19
GTT 9

... ...

Table 2.1: The sequence alignment (left) describes three taxa, each with
a sequence of DNA showing six states from the set S = {A,G,C, T,−}.
Columns, such as the one in bold, are site-patterns. The ‘indels’, indicated
by ‘-’, refer to insertions or deletions. The table of site-pattern frequencies
(right) is constructed by counting occurrences of each site-pattern in the
left table. Site-patterns involving indels are often ignored. This table of
frequencies can of course be converted into a table of empirical site-pattern
probabilities by dividing by the sequence length—the number of counted
site-patterns in the alignment.

2.2 Trees, Splits and Maximum Parsimony

Trees are used in phylogenetics to represent the evolutionary history of a set of
taxa. In a phylogenetic tree (Definition 2.2.1), the leaves represent the taxa, and
the remaining vertices represent the ancestral history of the taxa.

Definition 2.2.1 (Phylogenetic tree). A Phylogenetic X-tree, T (X), is a tree
(V,E) with set of leaves X corresponding to the collection of taxa under consider-
ation. We will often label taxa at the leaves by integers. V is the set of vertices of
T , and E the set of edges, sometimes denoted V (T ) and E(T ) respectively. A tree
T is ‘rooted’ if a single vertex in V (T ) is specified as the ‘root vertex’.

The goal of phylogenetic inference is to infer the ‘true’ tree by looking at the data
concerning the taxa at the leaves. By ‘true tree’, we mean either the tree showing
the actual evolutionary history of the species being considered, or—in the case of
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simulated data—the tree from which the data was generated. We can only know
for sure that we have identified the true tree in the latter case. We aim to find the
true tree by looking at each site-pattern from the alignment independently, and
finding the tree which makes the most sense across all of these site-patterns (see
Figure 2.1).

Definition 2.2.2 (character). A character is a map

f : X → S,

where X is the set of leaves of some phylogenetic tree T , and S is set of states.

For example, given a sequence alignment we may consider the set of states S
corresponding to DNA, and think of a character f as corresponding to a site-
pattern. In Table 2.1, the highlighted column is the site-pattern given by character
f defined by,

Human f7→ G,

Gorilla f7→ T,

and, Chimp f7→ T.

The first methods used for phylogenetic inference required only a set of characters,
derived from site-patterns from a sequence alignment. One such method is maxi-
mum parsimony. The intuitive idea behind maximum parsimony was introduced
by Edwards and Cavalli-Sforza [10] with the quote:
“The most plausible estimate of the evolutionary tree is that which invokes the
minimum net amount of evolution”.
The process involves finding the tree which requires the fewest number of changes
required along its internal edges for each of the given characters. Methods for
achieving this first appeared in [6], and more algorithms for finding the minimum
number of changes required for a given character have since been developed (see
[25]).

Definition 2.2.3 (Split). A split is a partition of a leaf-set X into two sets A
and B, denoted A|B, where A,B ⊆ X are non-empty. If for a split A|B, we have
a tree T (X) such that when a particular edge is be removed, the leaves of the two
resultant subtrees correspond to the subsets A and B, we say that the split A|B is
displayed by T (X). In the context of inferring a tree on X, a split A|B is called
a true split if it is displayed by the true tree. A split is considered to be balanced
if |A| = |B| and unbalanced otherwise. Finally, if |A| = 1 or |B| = 1, we say the
split A|B is trivial.
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Figure 2.1: Two possible trees on six-taxa for the site-pattern ‘ATCCTT ’.
The tree on the left requires a change along three different branches to
fit the given site-pattern, whereas the tree on the right requires only two.
Maximum parsimony (Definition 2.2.5) suggests that for the current site-
pattern, the right tree is more likely.

0
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1

0

0 001

1

Figure 2.2: An example of the split 134|256 represented as a binary char-
acter on a six-taxon tree. The parsimony score for this split is 2, since a
change is required along two separate edges

c d e fba

ab|cdef, abc|def, abcd|ef.
Figure 2.3: ‘True’ splits correspond to edges in a tree which, when re-
moved, partition the leaves of the tree. The tree is uniquely defined by
this collection of splits (see Theorem 2.2.4). The leaves in the leaf-set
X = {a, b, c, d, e, f} represent present-day species. The colour and posi-
tion of the above splits show their correspondence with the internal edges
of the tree. The edges which are directly connected to the root vertex are
treated as a single edge, since both edges induce the same bipartition of
taxa when removed.
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For simplicity of notation, we write A|B as abc|def where A = {a, b, c} and B =
{d, e, f}. Also note that since a split is a bipartition (a partition of the leaf-set
into two blocks), there is no distinction between splits A|B and B|A, and that we
often consider only non-trivial splits, since trivial splits are (trivially) true. See
Figure 2.3 for an example of a set of all non-trivial splits displayed by a particular
6-taxon tree.
Given a leaf-set X we see that the number of possible splits is given by 2|X|−1−1.
The number of splits displayed by a given X-tree T is simply the number of edges
|E(T )|. In either case, to count only the non-trivial splits, we can subtract |X|. The
importance of splits in phylogenetic inference is made apparent in Theorem 2.2.4

Theorem 2.2.4. A tree with leaf-set X can be reconstructed uniquely from the set
of all splits that are displayed by the tree.
Proof. See Chapter 2 in [25]. See Figure 2.3 for an example. ■

We now formally define a parsimony score for both site-patterns and splits.

Definition 2.2.5 (Parsimony score for a character). The parsimony score for
a site-pattern or character f on a given tree T and state space S, is the minimum
number of substitutions required along edges of T to obtain the site-pattern f at
the leaves, considering all possible labellings of internal vertices by states in S.

Definition 2.2.6 (Parsimony score for a split). The parsimony score for a
split A|B is the parsimony score for the character that maps taxa in A and B to
the states 0 and 1 respectively, with binary state-space S.

See Figure 2.1 for an example of parsimony scores for site-patterns, and Figure 2.2
for an example of the parsimony score for a split. Note that since true splits
correspond to an internal edge, they have a parsimony score of 1.
True splits each tell us something about the true phylogeny—that two subsets of
species are somehow separate. In other words, they are separated by an edge in
the true evolutionary tree (see Figure 2.3). Fundamentally, we can see that the
core problem of phylogenetic inference is identifying these true splits.

2.3 The General Markov Model

In 1978, Felsenstein [13] pointed out that some methods for inferring phylogenetic
trees, including maximum parsimony (as described in Section 2.2), compatibility,
and distance methods, are not always statistically consistent. That is, it is not
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π

x3x2x1

N U

M
V

Figure 2.4: A 3-taxon tree with leaf set L(T ) = {x1, x2, x3}. M , N , U
and V are substitution matrices and π is the initial distribution of states
at the root.

the case that given more data (longer sequences) the tree chosen by these methods
will necessarily converge to the true tree. Maximum likelihood methods assume
that a sequence of characters have been generated under some stochastic model,
and select the tree and model parameters for which the characters have the highest
probability of occurring. Under certain conditions, these methods can be shown to
be consistent [29, 12]. An example of such a stochastic model is the general Markov
model of character evolution. The general Markov model is represented as a class
of k× k substitution matrices with rows and columns indexed by the set of states
S, which describe the probability of a substitution from one state to another along
a single edge, as defined in Definition 1.1.6. (see Appendix A for examples). Given
substitution matrices for the edges of a tree, and an initial distribution of states at
the root which describes the probability of beginning in a particular state (often
denoted π), we can calculate the probability P (f) of observing a given character
f on the leaves of the tree.
For example, if we take the 3-taxon tree shown in Figure 2.4 with some initial
distribution π and substitution matrices M , V , N , U on the edges, the probability
of the site pattern given by a character f under our model is given by,

P (f) =
∑
i,j∈S

πi Mj,i Nf(x1),j Uf(x2),j Vf(x3),i,

where the pq-th entry of each substitution matrix is the probability of a substi-
tution to p from q along the corresponding edge. The index i can be thought of
as ranging over the possible states of the root vertex. Similarly, we think of j as
ranging over the possible states of the parent of x1 and x2.
The parameters for the general Markov model are the entries of these substitution
matrices. The only restriction is that the entries in each column are positive and
sum to 1. Note that the convention of having unit row-sums is often used, in which
the ij-th entry of each transition matrix is the probability of a substitution from
i to j. Throughout, we adopt the unit column-sum convention. Sub-models of



2.4. PRUNING ALGORITHM 16

the general Markov model are often used, because they have a reduced number of
parameters. This is done by adding more constraints to substitution matrices (see
Appendix A). Importantly, this means that results concerning the general Markov
model are applicable to sub-models as well.

2.4 Pruning Algorithm

We can efficiently calculate site pattern probabilities using the following recursive
algorithm first introduced in [12] and described further in [14, 15].
Given the state-set S = {A,C,G, T} and initial distribution vector π, define Lv(s)
to be the probability of seeing the observed states following from vertex v ∈ V (T ),
given that vertex v has state s. To initialise the algorithm, define for each leaf
x ∈ L(T ),

Lx(s) =

{
0 if f(x) = s, and
1 if f(x) ̸= s,

where f is the character on the leaves of the tree.

The next step is to calculate Lv(s) for each state s, and for every vertex v in the
tree in a post-order traversal. That is, begin with any vertex which has only leaves
as children and continue, only calculating Lx(s) for vertices having children c for
which Lc(s) has already been calculated.

Suppose that vertex v has the set of child vertices (direct descendants) denoted
Cv. Suppose also that a vertex u has an in-branch substitution matrix denoted
Mu. Then, Lv(s) is calculated as follows:

Lv(s) =
∏
c∈Cv

(∑
s′ ∈S

(Mc)s′,s Lc(s
′)

)
.

The last vertex visited will be the root vertex r, and the probability of observing
the site pattern f denoted P (f), is evaluated in the sum:

P (f) =
∑
x∈S

πx Lr(x).
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Calculating P (f) for each possible f allows one to construct a probability distri-
bution P describing the probability of observing each site-pattern on the leaves of
the tree. We can think of this probability distribution as an empirical probabil-
ity distribution obtained from a sequence alignment, but with an infinite sequence
length. Choosing the most likely tree—that is, the phylogeny that maximises P (f)
for each site-pattern f—requires navigating through tree-space, the set of all trees
on X. This is computationally difficult due to the large number of trees. However,
from a theoretical point of view, the notation developed above allows us to state
the following lemma.
Lemma 2.4.1. Consider a binary tree T (X), and take two leaves α, β with the
same parent vertex. Let the Markov matrices on the edges of these leaves each be
the identity. Then, the probability P (f) of observing any site-pattern given by a
character f with f(α) ̸= f(β), is zero. Further, the probability P (g) of observing
a site-pattern given by character g with g(α) = g(β), is equal to the probability of
observing the same site-pattern on the smaller tree T (X − {β}) where the subtree
with leaves α, β in T (X) is replaced with a single leaf, labelled α.
Proof. Let f be such a character. we have the site-pattern probability (calculated
in the naïve way described in Section 2.3) given by,

P (f) =
∑

i1,i2,...in−1,in∈S

K(i1, i2, ..., in−1, f)If(α),inIf(β),in ,

where K is a product of entries of substitution matrices on internal edges, Ia,b is
the a, b-th entry of the identity matrix, and im is ranging over the possible states
at the parent vertex of α and β. Since Ia,b = 1 if a = b and 0 otherwise, we see
that the only non-zero terms in the summation occur when im = f(α) = f(β), so
the probability evaluates to zero. Further, we see that if we have a site-pattern
given by g with g(α) = g(β), we have

P (g) =
∑

i1,i2,...in−1,in∈S

K(i1, i2, ..., in−1, g)Ig(α),inIg(β),in

=
∑

i1,i2,...in−1,in∈S

K(i1, i2, ..., in−1, g)Ig(α),in

=
∑

i1,i2,...in−1,in∈S

K∗(i1, i2, ..., in−1, g)Min,in−1Ig(α),in

=
∑

i1,i2,...in−1∈S

K∗(i1, i2, ..., in−1, g)Mg(α),in−1 ,

where M is the Markov matrix on the edge leaving the parent of α and β, and
the product K∗ is K with Min,in−1 taken out. This is simply an expression for the
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probability of the same site-pattern g on a smaller tree where α, β are treated as
a single leaf which we call α, as required. ■

Given a tree T with leaves in X denoted by integers, and a character f defined
by f(j) = ij ∈ S, we denote P (f) = pi1,...,i|X| . That is, the order of the states ij
in the subscript of p describe the character f . We also denote the collection of all
possible site-pattern probabilities P (f) by P .

2.5 Flattenings

Over the last two decades, significant progress has being made in developing an un-
derstanding of algebraic structures underlying phylogenetic models. Phylogenetic
invariants, introduced in [7, 22], are polynomials which vanish when evaluated at
site-pattern probabilities for a particular tree under a given model. For an intro-
duction to phylogenetic invariants, see [2]. These polynomials have been shown
to be useful in phylogenetic inference [1]. Methods for phylogenetic inference de-
scribed so far (Section 2.2 and Section 2.4) require searching through tree-space
in order to find a phylogeny which best suits the given alignment. Ideas involving
the theory of phylogenetic invariants such as flattenings can be used for inference
without the need to search through trees [11, 3]. We discuss flattenings without
making explicit references to phylogenetic invariants.
Definition 2.5.1 (Flattening). Consider a phylogenetic tree T with leaf-set X, a
state space S, a split A|B, and a vector of all possible site-pattern probabilities
P = (pi1,i2,...,i|X|)ij∈S . A flattening, denoted FlatA|B(P ), is an arrangement of
these probabilities into a matrix with rows indexed by all |A| length words with
alphabet S, and columns indexed by words with length |B|, such that probability
pi1,i2,...,i|X| is located at position (ia1 ...ia|A| , ib1 ...ib|B|), where al ∈ A and bl ∈ B.

Flattenings are perhaps best explained via an example:
Example 2.5.2. Consider a four-taxon tree with a binary state space (k = 2) and
set of taxa X = {0, 1, 2, 3}. The flattening produced from the split 03|12 would be:

Flat 03|12 (P ) =

00 01 10 11


00 p0000 p0010 p0100 p0110
01 p0001 p0011 p0101 p0111
10 p1000 p1010 p1100 p1110
11 p1001 p1011 p1101 p1111

,

with rows and columns indexed by all length-2 words with alphabet S = {0, 1}.
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The property of flattenings which is useful to phylogenetic inference is related to
the rank (Definition 1.1.1). To more easily describe this property though, we need
the following definition of generic rank.

Definition 2.5.3. Consider a phylogenetic tree T under a general Markov model.
If the initial distribution π at the root has strictly positive entries, and the Markov
matrices on each edge of T have full-rank, we say that the model is generic. For
a matrix with entries depending on some generic model, we refer to the rank of the
matrix as the generic rank.

Throughout, we will enforce the restrictions defined in Definition 2.5.3 on the
general Markov model, and thus any results concerning the rank of matrices are
results concerning the generic rank.
The applicability of flattening matrices to phylogenetic inference is due to the
following theorem provided in [11] and [3].

Theorem 2.5.4. Given a phylogenetic tree T and state space S, the flattening
matrix FlatA|B(P ) computed from a split A|B has rank(FlatA|B(P )) = k if the
split A|B is displayed by T , and has rank(FlatA|B(P )) ≥ k2 otherwise.
Proof. The result is proven in [11]. We provide a new proof in Section 3.1 which is
more closely analogous to the proof of the rank properties of subflattenings given
in [26]. We will describe subflattenings shortly. ■

Lemma 2.5.5. Consider a site-pattern probability distribution P as having evolved
under a general Markov model on a tree T (X). Let P̃ be the probability distribution
corresponding to T (X) with the Markov matrices at the leaf edges replaced by the
identity matrix. Then, for a split A|B we have

rank(FlatA|B(P)) = rank(FlatA|B(P̃))

in the generic case.
Proof. We begin with the following relationship relating P and P̃ given in [27]:

P = (M1 ⊗M2 ⊗ ...⊗M|X|) · P̃ ,

where Mi are Markov matrices on the edges of the leaves in T (X). Now, considering
FlatA|B(P ) as a joint-distribution, it is possible to show that

FlatA|B(P ) = MAFlatA|B(P̃ )MT
B ,

where MA and MB are the Kronecker products (see Section 1.1) of all the Markov
matrices on the edges of the leaves in A and B respectively. These matrices are
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full-rank, and rank is invariant under multiplication by full-rank square matrices,
giving us the result. ■

The sizes of flattening matrices increase exponentially in the number of taxa.
Even a 4-taxon flattening with k = 4 is cumbersome to write down. Subflattenings
are smaller matrices which exhibit rank properties similar to those described in
Theorem 2.5.4. We now discuss the construction of these subflattening matrices.

2.6 Subflattenings

As mentioned in Section 2.5, flattening matrices have desirable properties but are
very large—exponential in the number of taxa. Introduced in [26], subflattenings
are derived from flattenings, and offer analogous properties with the benefit of
reduced dimensions—the number of entries in a subflattening matrix is quadratic
in the number of taxa. To define subflattenings, we first need to introduce the
following transformation of the flattening.

Definition 2.6.1 (Transformed flattening). Given a flattening FlatA|B(P ), we
define the transformed flattening,

FlatS
A|B(P ) :=

( |A|⊗
i=1

S

)
FlatA|B(P )

( |B|⊗
i=1

S

)T
, (2.1)

where S is some k × k matrix which is invertible and has a constant row. The
transformed flattening has the same shape as the original flattening, and it is
therefore still indexed by strings of characters in S.

Note that the matrix S in Definition 2.6.1 is chosen because it takes Markov
matrices to elements of the affine group via similarity transformation, as discussed
in Section 1.2.

Definition 2.6.2 (Subflattening). Let FlatS
A|B(P ), be a transformed flattening with

rows and columns indexed by strings of characters from S with length |A| and |B|
respectively. Take the state s∈S which corresponds to the index of the constant
row in S (note that by doing this, we are choosing an ordering for the state-space
S). Define the subflattening, SubflS

A|B(P ), as the (|A|(k−1)+1)×(|B|(k−1)+1)

sub-matrix consisting of entries
(
FlatS

A|B(P )
)
αβ

where strings α and β each include
at most one state in S that isn’t s.
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For a split A|B, the dimensions of the corresponding sub-flattening are

(|A|(k − 1)+1) × (|B|(k − 1)+1).

That is, if the dimensions of the flattening matrix are m× n where m = k|A| and
n = k|B|, then the dimensions of the corresponding sub-flattening are

(logk(m
k−1)+1) × (logk(n

k−1)+1).

Subflattening matrices have a rank property that is analogous to Theorem 2.5.4
for flattenings [26].

Theorem 2.6.3. Let T be a tree with site pattern probability distribution P . Let
A|B be a split. A subflattening matrix SubflS

A|B(P ) has rank k if A|B is displayed
by T , and rank greater than or equal to 2(k−1)+1 otherwise.
Proof. The proof is given in the appendix in [26] ■

The proof of the rank condition for the subflattenings in [26] is in some way
similar to the proof of Theorem 2.5.4 for flattenings that we give in Section 3.1. In
the subflattenings case, matrix entries are linear combinations of the site-pattern
probabilities and so extra care is needed to claim linear independence of rows and
columns in the subflattening following a divergence event (a leaf splitting into two
new leaves, corresponding to a species diversifying into two new ones). The proof
given in [26] appeals to theory of phylogenetic invariants.
We see that flattenings and subflattenings—along with the corresponding results
Theorem 2.5.4 and Theorem 2.6.3—can be used to identify true splits:

Algorithm 2.6.4. Given a DNA sequence alignment (S = {A,C,G, T}) on set
of taxa X, one can attempt to identify the most likely phylogenetic tree to fit the
alignment as follows:

1. Count the frequency of each site pattern in the sequence alignment to derive
an estimate of the probability distribution P̂ .

2. Choose a suitable matrix S and for each split A|B of X, construct SubflS
A|B(P̂ ).

3. Estimate the rank of SubflS
A|B(P̂ ) (Section 2.7) to decide whether or not A|B

is a true split.
4. Once all the splits have been evaluated, conclude that the true tree is the one

defined by the set of true splits.

There are a number of issues arising from the process suggested in Algorithm 2.6.4.
First, we require a method for estimating the rank of the subflattening matrices.
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We also require a course of action if two ‘true’ splits are incompatible, that is,
they are not displayed by any single true tree; for example, splits 12|34 and 13|24.
Finally, another concern is that Algorithm 2.6.4 involves constructing and evalu-
ating a flattening or subflattening matrix for each of the 2|X|−1−1 possible splits on
a given X-tree. Eriksson [11] provides a statistically consistent algorithm, which
involves the evaluation of at most (|X|−1)2−3 splits, and suggests singular value
decomposition for examining the rank of flattenings. We will discuss singular value
decomposition in Section 2.7 and employ a version of Eriksson’s SVD algorithm
in Chapter 5.

2.7 Rank Estimation

Importantly, the rank properties described in Theorem 2.5.4 and Theorem 2.6.3
are theoretical results and assume an infinite sequence length. In practice finite
sequence lengths mean that flattening matrices are often sparse with rank simply
equal to the number of non-zero rows or columns, and subflattening matrices
will often be full-rank even for true splits. Identifying true splits through the
application of these results therefore requires a measure of how close these matrices
are to being rank k. The use of singular value decomposition (Definition 1.3.1),
along with the Eckart-Young-Mirsky theorem (Theorem 1.3.3), has been suggested
by Eriksson [11]. Further work has been done to develop and optimise algorithms
involving flattenings and singular values [4, 21, 8, 16]. Optimisations specific to
the use of subflattenings have not yet been investigated.
To aid in applying Theorem 1.3.3 to flattenings and subflattenings, [4] provides
the following normalised measure of ‘closeness’ to rank k.

Definition 2.7.1 (Split score). The split score for an m× n flattening or sub-
flattening FA|B corresponding to a split A|B is defined to be

S(FA|B) =

√√√√∑min{m,n}
i=k+1 σ2

i∑min{m,n}
i=1 σ2

i

=

√
1−
∑k

i=1 σ
2
i

∥FA|B∥2F
,

where σ1 ≥ ... ≥ σmin{m,n} ≥ 1 are the singular values of FA|B.

The benefits of the above definition, as described in [4], are that only the k largest
singular values are needed, and that the split score has values between 0 and 1. A
score of 0 indicates the matrix in question is rank k.
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2.8 Hadamard Matrices

Hadamard matrices are prominent in phylogenetics, with applications in phylo-
genetic inference and the study of models and methods [18, 19, 5]. We define
Hadamard matrices here.

Definition 2.8.1 (Hadamard matrices). A n×n matrix H is a Hadamard ma-
trix if each of its entries are either 1 or −1 and its rows are mutually orthogonal.
They satisfy HHT = nI.

The construction of Hadamard matrices of size (2n×2n) for a given n, is simple:

Example 2.8.2. The following is an example of a 2× 2 Hadamard matrix,

H2 =

[
1 −1
1 1

]
,

and we can use this matrix and the Kronecker product to obtain a 4× 4 Hadamard
matrix.

H4 = H2 ⊗H2 =


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

 .

In general, the Kronecker product of n copies of H2 will result in a 2n×2n Hadamard
matrix.

The 4 × 4 Hadamard matrix is an example of a valid choice for the matrix S in
the construction of the subflattening (Definition 2.6.1). We will use Hadamard
matrices for this purpose in Chapter 5.



Chapter 3

Flattenings

In this chapter, we provide a new proof for the flattening rank theorem (Theo-
rem 2.5.4). We begin with a small example which illustrates the result and draws
attention to some key ideas employed within the proof.
Consider the following four taxon tree under the general Markov model, with
binary state-space S = {0, 1}. We draw the leaf vertices close to the internal
vertices to indicate that the leaf edges have zero-length. The meaning of this is
that the Markov matrix on each of these edges is the identity.

bba b

b b
b
b c
b d

From a continuous-time perspective, this corresponds to the idea that there are no
substitutions per unit of time along these edges, or equivalently, that no time has
passed. For details on interpreting and modelling phylogenetic trees as continuous-
time processes, see [25].
Let P0 = (pijml)i,j,m,l∈S be the site-pattern probability distribution arising from
the model parameters. From Lemma 2.4.1, we observe that,

pijml = 0 whenever i ̸= j or m ̸= l,

allowing us to simplify the flattenings corresponding to the three possible splits:
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(with omitted entries all equal to zero)

Flat ab|cd (P0) =

00 01 10 11


00 p0000 p0011
01
10
11 p1100 p1111

,

Flat ac|bd (P0) =

00 01 10 11


00 p0000
01 p0011
10 p1100
11 p1111

,

Flat ad|bc (P0) =

00 01 10 11


00 p0000
01 p0011
10 p1100
11 p1111

.

In this form, we can clearly see the effect of Theorem 2.5.4 on the flattenings for
this tree. That is, we can see that Flat ab|cd (P0) has rank k = 2 and Flat ac|bd (P0)
and Flat ad|bc (P0) have rank k2 = 4. Additionally, using Lemma 2.5.5 shows that
replacing the identity matrices at the leaves with any other Markov matrices will
not change the rank of each of the flattenings.
We now consider the same tree with zero-length leaf edges and corresponding
flattenings for general k states, and make similar observations about the ranks in
order to prove Theorem 2.5.4. The proof provided is by induction on the number
of leaves, and dexamines flattening matrices directly. It is more closely related
to the proof for the analogous condition for subflattenings given in [26] than the
proof appearing in [11]. The proof provided makes use of the term ‘divergence
event’, which refers to the divergence of a leaf into two new leaves. In terms
of evolution, this means a species has diversified into two new ones; this is how
evolutionary trees grow. We often re-use the label of the old leaf for one of the
new ones arbitrarily, when there is no ambiguity. See Figure 3.1 for an example.
We assume a general number of states, k, with state-space S = {κ1, ...κk}.
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3.1 Proof of Flattening Rank Theorem

Recall Theorem 2.5.4, concerning the rank properties of flattenings:

Theorem 2.5.4. Given a phylogenetic tree T and state space S, the flattening
matrix FlatA|B(P ) computed from a split A|B has rank(FlatA|B(P )) = k if the
split A|B is displayed by T , and has rank(FlatA|B(P )) ≥ k2 otherwise.

To prove Theorem 2.5.4, we begin by proving the rank conditions hold for the base
case: a tree with four leaves, known as a quartet tree. This is the smallest tree for
which we have non-trivial splits. We then proceed by induction by assuming the
result for an n taxon tree and showing the result holds after a divergence event,
recognising that every n+1 taxon tree can be grown from an n taxon tree after
one such event. This is a common method for proofs of results relating to trees
[25]. Note that throughout this proof, statements about rank are referring to the
generic rank (see Definition 2.5.3).
Proof. Take the true split ab|cd on the quartet tree T with identity matrices on
the leaves and site-pattern distribution P0. Then, from Lemma 2.4.1,(

Flat ab|cd (P0)
)
κiκj ,κmκl

= pκiκjκmκl
= 0 whenever κi ̸= κj or κm ̸= κl.

This means that there are only k possible non-zero rows in the flattening (the rows
indexed by κ1κ1, κ2κ2, κ3κ3, etc). That is, the rank of the flattening is at most k.
We can see that the rank is no less than k by observing the k × k sub-matrix
Flat(k×k)

ab|cd (P0) consisting of all the non-zero entries of Flat ab|cd (P0). This matrix
can be thought of as a flattening for a split x|y on a two-taxon tree with Markov
matrices Mx and My on the leaves x and y. Then, assuming a root distribution π
on this tree, we have,

det(Flat(k×k)
ab|cd (P0)) = det(Mxdiag(π)M

T
y ) = (πκ1 . . . πκk

) det(Mx) det(M
T
y ) ̸= 0,

where κi ∈ S for all i. By Lemma 1.1.3, we see that this submatrix has rank k,
and thus the original flattening has rank k.
Now consider a false split on T (without loss of generality, ac|bd). We have,(

Flat ac|bd (P0)
)
κiκj ,κmκl

= pκiκmκjκl
= 0 whenever κi ̸= κm or κj ̸= κl.

That is, the only non-zero entries are precisely the diagonal entries(
Flat ac|bd (P0)

)
κiκj ,κiκj

,
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Figure 3.1: An example of a divergence event occurring on a tree, with
the initial tree on the left, and the resulting tree on the right. The leaf g
splits into two leaves, g and h, each with branch length zero.

and so we see that the flattening has rank k2.
Now consider a tree with a general n leaves, take a split A|B and assume the
flattening satisfies the rank conditions (Theorem 2.5.4). Suppose a divergence
event occurs on leaf n and that n ∈ B, giving a new taxon n+1. Note that the
branch lengths on taxa n and n+1 are zero (see Figure 3.1 as an example).
We will first consider the case where the new taxon n+1 is assigned to B, giving
a new split A|B′. We show that in this case the rank conditions still hold for
the flattening on A|B′. Then, we will consider the case where the new taxon n is
instead assigned to A, giving the new split A′|B. Since n and n+1 form a cherry,
this new split is false, so we must show the rank of the flattening is greater than
or equal to k2. In this scenario, we consider two subcases: the case where A|B was
a true split, and the case where A|B was a false split. For each of these cases, we
will show that the flattening rank is greater than or equal to k2, hence completing
the proof.
Suppose taxon n+1 is assigned to B, and label the new set as B′. Then, in the
flattening, we have for all κi ∈ S (using Lemma 2.4.1)

(
FlatA|B′(P )

)
κ1...κi,κl...κxκy

=

{
0 if κx ̸= κy, or(
FlatA|B(P )

)
κ1...κi,κl...κx

otherwise.

We can see that the flattening on A|B′ consists of the the same k|B| rows as the
flattening on A|B, along with k|B|(k − 1) additional zero columns (when κx ̸= κy

for each κy as above, see (3.3) in Figure 3.3 for an example). The rank of the A|B′

flattening therefore is unchanged from the rank of the A|B flattening following the
divergence event: the rank conditions given in Theorem 2.5.4 again hold.
Now suppose we instead add the new taxon n+1 (which has diverged from n ∈ B)
to the subset A. Label this new subset A′. Then, A′|B is a false split regardless
of whether or not A|B was. We wish to show that the rank of the flattening is at



3.1. PROOF OF FLATTENING RANK THEOREM 28

least k2.

Similar to the previous situation, we have (again using Lemma 2.4.1),

(
FlatA′|B(P )

)
κ1...κiκj ,κl...κx

=

{
0 if κj ̸= κx, or(
FlatA|B(P )

)
κ1...κi,κl...κx

otherwise.

Carefully considering the row and column indexing, notice that each row in the
old flattening ‘expands’ to k rows in the new flattening, with the existing entries
‘stretched’ down across the k rows, such that in each column, only one of these k
rows has a non-zero entry (see (3.4) in Figure 3.3 for an example). We see that
the span of the rows in the A|B-flattening is a subspace of the span of the rows in
the A′|B flattening. Thus from Definition 1.1.1, we have

rank
(
FlatA|B(P )

)
≤ rank

(
FlatA′|B(P )

)
.

That is, the rank doesn’t decrease after the divergence event. At this stage, we
have proven by induction the following weaker property:

divergence events do not decrease the rank of the flattenings. (3.1)

This property will allow us to show that the rank of the new A′|B flattening is at
least k2 regardless of whether A|B was true or false. Let g and h be labels for the
leaves which the n-th taxon diverges into, so as to align with the example given
in Figure 3.2. In the new split A′|B, we suppose without loss of generality that
g ∈ A′ and h ∈ B. Then, we know the tree looks like:

g

h

Then, we consider the quartet tree below, with zero-length leaf branches.

bb
L b

R b

b

b g
b h

The split Lg|Rh is a false one on this quartet tree, so we see from the base case that
the corresponding flattening has rank k2. We repeatedly deploy both Lemma 2.5.5
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Figure 3.2: The steps showing a quartet tree grow into a larger tree, via
divergence events and application of Markov matrices on the leaves. The
rank of the flattening on a split A|B with g ∈ A, h ∈ B doesn’t decrease
at any point in this process.

and result (3.1) above, to grow the L and R leaves back into the required subtrees,
assigning new leaves to the appropriate side of Lg|Rh in accordance with A′|B
(please see Figure 3.2 for an example). We see that after growing the tree the
flattening FlatA′|B is at least rank k2, since the rank doesn’t decrease at any stage
during this process. We have now shown that the rank conditions described in
Theorem 2.5.4 hold in general. This completes the proof. ■
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Flat 12|34 (P ) =

00 01 10 11


00 p0000 p0001 p0010 p0011
01 p0100 p0101 p0110 p0111
10 p1000 p1001 p1010 p1011
11 p1100 p1101 p1110 p1111

(3.2)

Flat 12|345 (P ) =

000 001 010 011 100 101 110 111


00 p0000 p0001 p0010 p0011
01 p0100 p0101 p0110 p0111
10 p1000 p1001 p1010 p1011
11 p1100 p1101 p1110 p1111

(3.3)

Flat 125|34 (P ) =

00 01 10 11



000 p0000 p0010
001 p0001 p0011
010 p0100 p0110
011 p0001 p0111
100 p1000 p1010
101 p1001 p1011
110 p1100 p1110
111 p1101 p1111

(3.4)

Figure 3.3: The first of the above matrices is a flattening on a quartet tree.
The next two matrices are are examples of flattenings directly following a
divergence event, where taxon 4 splits into taxa 4 and 5. The flattening
labelled (3.3) corresponds to the case where the new taxon is added to
the left side of the split, and (3.4) corresponds to the case where the new
taxon is added to the right side of the split.



Chapter 4

Subflattenings

4.1 Subflattening Construction

The construction of subflattenings begins with the similarity transformation S
taking Markov matrices to matrices in the affine group Aff(k − 1),

M
S7−→ SMS−1 =

[
T v
0 1

]
∈ Aff(k − 1),

as previously discussed in Section 1.2. Note that S is the matrix we introduced
earlier in Definition 2.6.1. We will discuss options for choosing this matrix in
Chapter 5.
The above transformation, applied to the Markov matrices used in the construc-
tion of flattenings, leads to the construction of transformed flattenings (again see
Definition 2.6.1). The entries of the transformed flattening are given by,

qi1i2...i|X| :=
∑

j1,j2...j|X|∈S

Si1j1Si2j2 . . . Si|X|j|X|pj1j2...j|X| ,

and are referred to in [26] as ‘q-coordinates’. Their location within the transformed
flattening depends on the split. The proof of the rank properties of subflattenings
involve working directly with these linear combinations of site pattern probabilities,
observing changes under divergence events [26]. From here, the identification of a
representation of ×m Aff(k − 1) is what gives rise to subflattenings, obtained by
taking the corresponding submatrix of the transformed flattening. We will discuss
this more in Section 4.3.

31
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4.2 Subflattening Equivalent Definition

Below is an equivalent definition of the sub-flattening, which can be created from
the flattening in a single step. This construction is due to David Bryant (pers.
commun.).
Theorem 4.2.1. Given a flattening FlatA|B(P ), and an invertible k× k matrix S
with a constant row of ones at the bottom, we have,

SubflS
A|B(P ) =



Ŝ ⊗ 1 ⊗ . . . ⊗ 1

1 ⊗ Ŝ ⊗ . . . ⊗ 1
1 ⊗ 1 ⊗ . . . ⊗ 1

...
1 ⊗ 1 ⊗ . . . ⊗ Ŝ
1 ⊗ 1 ⊗ . . . ⊗ 1



|A| terms︷ ︸︸ ︷

FlatA|B(P )



Ŝ ⊗ 1 ⊗ . . . ⊗ 1

1 ⊗ Ŝ ⊗ . . . ⊗ 1
1 ⊗ 1 ⊗ . . . ⊗ 1

...
1 ⊗ 1 ⊗ . . . ⊗ Ŝ
1 ⊗ 1 ⊗ . . . ⊗ 1



T

,

|B| terms︷ ︸︸ ︷

(4.1)

where Ŝ is S with its row of ones removed, and 1 is the (1×k) row vector of ones.
Proof. We begin with the definition of the transformed flattening (Definition 2.6.1)
and note that the matrix given in Equation (2.1) is converted into the subflattening
via the removal of rows and columns indexed by strings which include at most one
state in S that isn’t some special state s, say. See Table 4.1 for an example.
For the proof, consider a general state-space S = {κi : i = 1, ..., k}, and choose
κk as the index for the constant row of ones in S and the ‘special’ state in the
subflattening construction.
We notice that removing the required rows and columns from the transformed
flattening is equivalent to removing those rows and columns from the matrices on
the left and right of Definition 2.6.1 respectively. We examine the matrix on the
left: ( |A|⊗

i=1

S

)
, (4.2)

and show that removing the required rows gives us the matrix on the left in
Equation (4.1).
We index the above matrix by a lexicographical ordering of tuples of states, as
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κ1κ1κ1κ1

κ1κ1κ1κ2

κ1κ1κ1κ3

κ1κ1κ2κ1

κ1κ1κ2κ2

κ1κ1κ2κ3

κ1κ1κ3κ1

κ1κ1κ3κ2

κ1κ1κ3κ3

κ1κ2κ1κ1

κ1κ2κ1κ2

κ1κ2κ1κ3

κ1κ2κ2κ1

κ1κ2κ2κ2

κ1κ2κ2κ3

κ1κ2κ3κ1

κ1κ2κ3κ2

κ1κ2κ3κ3

κ1κ3κ1κ1

κ1κ3κ1κ2

κ1κ3κ1κ3

κ1κ3κ2κ1

κ1κ3κ2κ2

κ1κ3κ2κ3

κ1κ3κ3κ1

κ1κ3κ3κ2

κ1κ3κ3κ3

κ2κ1κ1κ1

κ2κ1κ1κ2

κ2κ1κ1κ3

κ2κ1κ2κ1

κ2κ1κ2κ2

κ2κ1κ2κ3

κ2κ1κ3κ1

κ2κ1κ3κ2

κ2κ1κ3κ3

κ2κ2κ1κ1

κ2κ2κ1κ2

κ2κ2κ1κ3

κ2κ2κ2κ1

κ2κ2κ2κ2

κ2κ2κ2κ3

κ2κ2κ3κ1

κ2κ2κ3κ2

κ2κ2κ3κ3

κ2κ3κ1κ1

κ2κ3κ1κ2

κ2κ3κ1κ3

κ2κ3κ2κ1

κ2κ3κ2κ2

κ2κ3κ2κ3

κ2κ3κ3κ1

κ2κ3κ3κ2

κ2κ3κ3κ3

κ3κ1κ1κ1

κ3κ1κ1κ2

κ3κ1κ1κ3

κ3κ1κ2κ1

κ3κ1κ2κ2

κ3κ1κ2κ3

κ3κ1κ3κ1

κ3κ1κ3κ2

κ3κ1κ3κ3

κ3κ2κ1κ1

κ3κ2κ1κ2

κ3κ2κ1κ3

κ3κ2κ2κ1

κ3κ2κ2κ2

κ3κ2κ2κ3

κ3κ2κ3κ1

κ3κ2κ3κ2

κ3κ2κ3κ3

κ3κ3κ1κ1

κ3κ3κ1κ2

κ3κ3κ1κ3

κ3κ3κ2κ1

κ3κ3κ2κ2

κ3κ3κ2κ3

κ3κ3κ3κ1

κ3κ3κ3κ2

κ3κ3κ3κ3

Table 4.1: Row indexing of the flattening and transformed flattening on a
split A|B with |A| = 4, state space S = {κ1, κ2, κ3} and special state κ3.
The labels in bold are the labels for the rows remaining in the subflatten-
ing.

described in Section 1.1,( |A|⊗
i=1

S

)
I,J

= SI1,J1 . . . SI|A|,J|A| ,

where Ii, Ji are the i-th entries of the tuples I and J respectively. We see that the
last row of the above matrix, indexed by I = (κk, ...κk), is a row of ones, since the
last row of S (the row indexed by κk) is a row of ones. This row is the same as the
last row in the matrix on the left in Equation (4.1). We now consider a general
row of the above matrix.
As the only rows we keep from this matrix are those which involve at most one
non-κk state, we can denote our row indices (aside from the very last row) by
I(n,κm), indicating:

• the position of the single non-κk state, n, and
• which of the k − 1 other states is in this position, κm.

We note that the rows are ordered by the first parameter and then by the second.
Fix a row I(n,κm). Since the state κk is the index of the row of ones in S, we have,
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( |A|⊗
i=1

S

)
I(n,κm),J

= Sκk,J1 . . . Sκk,Jn−1Sκm,JnSκk,Jn+1 . . . Sκk,J|A|

= Sκm,Jn .

Let J
(m)
n denote the n-th entry of the m-th tuple, and let the column indices run.

We see that row I(n,κm) looks like,(
S
κm,J

(1)
n
, . . . , S

κm,Jk(|A|)
n

)
. (4.3)

Observe the matrix on the left in Equation (4.1) as a block-vector, and choose the
n-th block. We look at the (κm, J) entry of this block, for some J :( n−1⊗

i=1

1

)
⊗ S ⊗

( |A|⊗
i=n+1

1

)
κm,J

= 1 . . . 1 · Sκm,Jn · 1 . . . 1 = Sκm,Jn .

Letting the row indices J (i) run, we see that the κm-th row in the above block is
given by (

S
κm,J

(1)
n
, . . . , S

κm,Jk(|A|)
n

)
.

Which is the same as (4.3), and so we see that the two matrices are the same—the
I(n,κm)-row in the first matrix is the κm-row of the n-th block in the other, with
order preserved. The argument for the matrices on the right in both expressions
is similar, giving us the result. ■

4.3 Generalised Subflattenings

As previously discussed Section 2.6, the subflattening is a submatrix of the trans-
formed flattening. In Section 4.1 we elaborated on this, describing the matrix
S—used in the definition of the transformed flattening—in terms of a similarity
transformation which takes Markov matrices to the affine group. We introduce
some notation.
Definition 4.3.1. We denote

M̂(m) :=
m⊗
i=1

M̂i,
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where
M̂i = SMiS

−1 =

[
Ti vi
0 1

]
∈ Aff(k − 1),

for some Markov matrices Mi.

The submatrix of the transformed flattening on a split A|B which defines the
subflattening corresponds to submatrices of M̂(m) and M̂(n) which provide faithful
representations of ×m Aff(k−1) and ×nAff(k−1) respectively [26]. While these
are the smallest such submatrices which give faithful representations, we show that
they aren’t the only ones.
Begin with the following definition:
Definition 4.3.2. For r < m, define D(r,m) to be the sum of the first r terms in
the binomial expansion of km = ((k − 1) + 1)m—or equivalently, the last r terms
in the expansion of km = (1 + (k − 1))m. That is,

D(r,m) :=
r∑

i=0

(
m

i

)
(k − 1)i.

Example 4.3.3. We recognise

D(1,m) =

(
m

0

)
(k − 1)0 +

(
m

1

)
(k − 1) = m(k − 1) + 1,

as the form of the dimension of the sub-flattening, and

D(m,m) =
m∑
i=0

(
m

i

)
(k − 1)i(1)m−i = ((k − 1) + 1)m = km,

as the form of the dimension of the flattening.

This definition allows us to state and prove the following lemma.

Lemma 4.3.4. For each r < m, there are D(r,m) rows in M̂(m) which include
only entries which are products of ≤ r entries from the blocks Ti and vi within M̂i

(that is, rows with entries which are monomials of degree no greater than r). Let
R := {i1, ..., iD(r,m)} be the set of indices for these rows. Then, we have

M̂
(m)
ip,j

= 0,

for all ip ∈ R and j /∈ R.
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Proof. First note that for this proof, we index each M̂i as regular k × k matrices
rather than 2×2 block matrices as they are described in Section 1.2. We can index
M̂(m) via m-tuples I = (i1, ..., im) and J = (j1, ..., jm), where

M̂
(m)
I,J = (M̂1)i1,j1 · ... · (M̂m)im,jm .

Then we see that generically, M̂(m)
I,J = 0 precisely when we have (ip, jp) = (k, h), h ̸=

k for at least one p = 1, ...,m.

We also observe that the indices of rows in M̂(m) which contain only elements with
order ≤ r are those in the set

R = {I = (i1, ..., im) : ip ̸= k for at most r values of p = 1, ...,m}.

Then a simple counting argument gives the number of such rows as

|R| =
r∑

i=0

(
m

i

)
(k − 1)i = D(r,m).

Now, consider the entry M̂
(m)
I,J where I ∈ R and J /∈ R. Then, J has more than

r entries which are not equal to k. Since r <m, we then have some p such that
Ip = ip = k and Jp = jp = h ̸= k. That is, (ip, jp) = (k, h), h ̸= k and so M̂

(m)
I,J = 0

for all I ∈ R and J /∈ R, as required. ■

This result leads us to the identification of the following class of faithful subrep-
resentations.
Theorem 4.3.5. For each r <m, the matrix M̂(m) has a D(r,m)×D(r,m) sub-
matrix, the form of which provides a faithful representation of ×m Aff(k−1).

Proof. Again, let R := {i1, ..., iD(r,m)} be the collection of indices of rows in M̂(m)

which contain products of at most r non-zero entries from Mi matrices. Define the
1× km row vector w by

wi = 1R(i)λi =

{
λi if i ∈ R, and,
0 otherwise,

for some scalars λi ∈ R. We see that w is a general element of the subspace
U := span{ei : i ∈ R} of Rkm (where ei is the 1×km row vector with 0 everywhere
except for a 1 in position i).
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Then, for i /∈ R, we use Lemma 4.3.4 to obtain

(
wM̂(m)

)
i
=

km∑
l=1

wl · M̂(m)
l,i

=
∑
l∈R

wl · M̂(m)
l,i +

∑
l /∈R

wl · M̂(m)
l,i

=
∑
l∈R

λl · 0 +
∑
l /∈R

0 · M̂(m)
l,i

= 0.

Implying wM̂(m) ∈ U . Since w is a general element in U , we see that U is
an ×m Aff(k−1)-invariant subspace of Rkm . Thus the mapping of elements of
×m Aff(k−1) to matrices with the form of the D(r,m) × D(r,m) sub-matrix is a
subrepresentation of ×m Aff(k−1), for all r<m. Furthermore, these representations
are faithful, since each of them have the matrix corresponding to the subflattening
representation as a submatrix. ■

We clarify this with an example,
Example 4.3.6. Take the following three transformed Markov matrices,[

T1 v1
0 1

]
,

[
T2 v2
0 1

]
,

[
T3 v3
0 1

]
.

Taking the Kronecker product of the first two matrices, we get:

[
T1 v1
0 1

]
⊗
[
T2 v2
0 1

]
∼


T1 ⊗ T2 T1 ⊗ v2 v1 ⊗ T2 v1 ⊗ v2

0 T1 0 v1
0 0 T2 v2
0 0 0 1

 .

First, note that we don’t have equality above, but rather the matrix on the RHS is
permutation similar to the LHS, as is the case for taking Kronecker products of
block matrices (see Section 1.1).
We see that the bottom-right 3 × 3 block in the above matrix is the ‘subflattening
representation’. If we take the Kronecker product of the above matrix with the third
Markov matrix, we have,
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T1⊗T2⊗T3 T1⊗T2⊗v3 T1⊗v2⊗T3 T1⊗v2⊗v3 v1⊗T2⊗T3 v1⊗T2⊗v3 v1⊗v2⊗T3 v1⊗v2⊗v3

0 T1⊗T2 0 T1⊗v2 0 v1⊗T2 0 v2⊗v3

0 0 T1⊗T3 T1⊗v3 0 0 v1⊗T3 v1⊗v3

0 0 0 T1 0 0 0 v1

0 0 0 0 T2⊗T3 T2⊗v3 v2⊗T3 v2⊗v3

0 0 0 0 0 T2 0 v2

0 0 0 0 0 0 T3 v3

0 0 0 0 0 0 0 1


.

After some simultaneous row and column permutations, we get,



T1⊗T2⊗T3 T1⊗T2⊗v3 T1⊗v2⊗T3 v1⊗T2⊗T3 T1⊗v2⊗v3 v1⊗T2⊗v3 v1⊗v2⊗T3 v1⊗v2⊗v3

0 T1⊗T2 0 0 T1⊗v2 v1⊗T2 0 v2⊗v3

0 0 T1⊗T3 0 T1⊗v3 0 v1⊗T3 v1⊗v3

0 0 0 T2⊗T3 0 T2⊗v3 v2⊗T3 v2⊗v3

0 0 0 0 T1 0 0 v1

0 0 0 0 0 T2 0 v2

0 0 0 0 0 0 T3 v3

0 0 0 0 0 0 0 1


.

Again, we can see the ‘subflattening representation’ appearing as the 4 × 4 block
matrix—actually a 3(k − 1) + 1 × 3(k − 1) + 1 matrix. We can see also that the
bottom-right 7× 7 block matrix—really a (3(k− 1)2 +3(k− 1)+ 1)-row matrix—is
another sub-representation. Setting aside the proof of Theorem 4.3.5, one can check
that specific cases are representations of ×m Aff(k−1) by comparing the product of
any two matrices to the product defined on ×m Aff(k−1).
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Take the following two matrices,

T =
3⊗

i=1

[
Ti vi
0 1

]
,

and

U =
3⊗

i=1

[
Ui ui

0 1

]
.

We look at one particular block entry of the matrix TU ,

(TU)3,5 = (T1 ⊗ T3)(U1 ⊗ u3) + (T1 ⊗ v3)U1

= (T1U1 ⊗ T3u3) + (T1U1 ⊗ v3)

= T1U1 ⊗ (v3 + T3u3).

Taking the corresponding elements of ×3Aff(k−1),

T = ((T1, v1), (T2, v2), (T3, v3)) ,

and
U = ((U1, u1), (U2, u2), (U3, u3)) ,

and using the multiplication in the group, we have

TU = ((T1, v1)(U1, u1), (T2, v2)(U2, u2), (T3, v3)(U3, u3))

= ((T1U1, v1 + T1u1), (T2U2, v2 + T2u2), (T3U3, v3 + T3u3)) .

Under the transformation from the group to the set of matrices of the above form,
the (3,5) entry of the corresponding matrix would be

T1U1 ⊗ (v3 + T3u3).

Which is the same as above. In other words, letting ρ be the the map which
transforms elements of the group to matrices of the above form, we have

(ρ(TU))3,5 = (ρ(T )ρ(U))3,5 .

The other entries can be checked, giving the representation we expect from the
theorem.

Having identified the sub-representations of ×m Aff(k−1) in Theorem 4.3.5, we
can construct corresponding matrices from site-pattern distributions in a way that
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is analogous to the construction of subflattenings.
Recalling Definition 2.6.2, the subflattening is defined as the submatrix of the
transformed flattening (Definition 2.6.1) with rows and columns indexed by tuples
containing at most one state other than a specially selected state, κk, say. That
is, the rows or columns in the set:

R = {I = (i1, ..., im) : ip ̸= κk for at most 1 value of p = 1, ...,m}.

Where m = |A| for selecting the rows of the subflattening, or |B| for selecting
columns.
This also describes precisely the collection of rows and columns of M̂(m) which
defines the ‘subflattening representation’ which we call D(1,m) (where the index
k is equivalent to the index κk. From the proof of Theorem 4.3.5, we see that

R = {I = (i1, ..., im) : ip ̸= k for at most r values of p = 1, ...,m},

is the corresponding set of rows for the general D(r,m) representation. This leads
to the following definition.
Definition 4.3.7 ((r, c)-subflattening). Let FlatS

A|B(P ) be a transformed flattening
with rows and columns indexed by string of characters from S with length |A| and
|B| respectively. Choose a state κk∈S, and consider the sets of indices:

Rr := {I = (i1, ..., i|A|) : ip ̸= κk for at most r values of p = 1, ..., |A|},

and,

Rc := {I = (i1, ..., i|B|) : ip ̸= κk for at most c values of p = 1, ..., |B|},

with r ≤ |A| and c ≤ |B|. We define the (r, c)-subflattening, Subfl (S,r,c)
A|B (P ),

as the D(r, |A|)×D(c, |B|) sub-matrix consisting of entries
(
FlatS

A|B(P )
)
αβ

where
α ∈ Rr and β ∈ Rc. We refer to these (r, c)-subflattenings as generalised
subflattenings

We see that the (1, 1)-subflattening is the subflattening as defined in Defini-
tion 2.6.2, and that the (|A|, |B|)-subflattening is the transformed flattening de-
fined in Definition 2.6.1.
We make the following conjecture about the rank of the (r, c)-subflattenings, which
is analogous to the corresponding flattening and subflattening rank conditions
(Theorem 2.5.4 and Theorem 2.6.3).
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Figure 4.1: The lattice structure of the subflattening row or column
indices. Here, 1 is the ‘special’ state and 0 represents other states.
For example if k is the special state, 101 corresponds to words ksk for
s ̸= k. (a) highlights the possible indices for the flattening, (b) the (2, 2)-
subflattening and (c) the (1, 1)-subflattening. (d) corresponds to the non-
faithful representation which maps group elements to the 1×1 identity
matrix. To visualise indexing in this way for a (3, 2)-subflattening we
would draw the lattice (a) to represent the possible column labellings,
and (b) for the possible row labellings.
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Conjecture 4.3.8 ((r, c)-subflattening rank). Let T be a tree with site pattern
probability distribution P . Let A|B be a split. A (r, c)-subflattening, Subfl (S,r,c)

A|B (P )

has rank k if A|B is displayed by T , and rank greater than or equal to

min {D(r′, 2),D(c′, 2)} ,

otherwise, where r′ = min{r, 2} and c′ = min{c, 2}.

Note that Conjecture 4.3.8 generalises Theorem 2.5.4 and Theorem 2.6.3, since in
the case of a transformed flattening on a split A|B, we have

min {D(r′, 2),D(c′, 2)} = min {D(|A|, 2),D(|B|, 2)} = D(2, 2) = k2,

and for regular subflattenings, we have,

min {D(r′, 2),D(c′, 2)} = min {D(1, 2),D(1, 2)} = D(1, 2) = 2(k − 1) + 1.

We do not currently have a formal proof, but claim that the proof of the subflat-
tening rank condition given in [26] with minor modifications will be applicable.
Table 4.2 shows the ranks for some (r, c)-subflattenings on an example tree T6.
We perform some simulations using these generalised subflattenings in Chapter 5.

4.4 The Use of Subflattenings for Inference

Allman et al. [4] discuss a concern for using flattenings and subflattenings for
phylogenetic inference—that splits with different balance are not comparable [4].
The paper showed that splits which were less balanced tended to have higher
scores. That is, they were further from the closest rank k matrix. Simply put,
the reason for this is that flattening matrices on more balanced splits are more
square, and those on less balanced splits are more rectangular. Flattenings on
more balanced splits have a higher maximum possible rank, since the maximum
possible rank for an m× n matrix is min{m,n}.
Allman et al. describe this concern as a reason for poor performance of Eriksson
SVD algorithm provided in [11]. One may suppose that subflattenings are less
impacted by this problem, since their reduced dimensions mean that the difference
in shape of the subflattenings on splits with different balance is less dramatic
compared to flattenings on the same splits. It is also possible that generalised
subflattenings can be used to mitigate some of this bias, by making strategic
choices of r and c. Evaluation of such a hypothesis would require simulations on
large trees, where differences in split balance is more pronounced. As the code
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Split Pars. Flat. (1,1) (1,2) (2,1) (2,2)
0123|45 1 4 4 4 4 4
012|345 1 4 4 4 4 4
01|2345 1 4 4 4 4 4
0124|35 2 16 7 7 7 16
0125|34 2 16 7 7 7 16
0134|25 2 16 7 10 7 16
0135|24 2 16 7 10 7 16
013|245 2 16 7 7 7 16
0145|23 2 16 7 7 7 16
014|235 2 16 7 7 10 16
015|234 2 16 7 7 10 16
0234|15 2 16 7 10 7 16
0235|14 2 16 7 10 7 16
023|145 2 16 7 10 7 16
0245|13 2 16 7 10 7 16
02|1345 2 16 7 7 7 16
0345|12 2 16 7 7 7 16
03|1245 2 16 7 7 10 16
045|123 2 16 7 7 10 16
04|1235 2 16 7 7 10 16
05|1234 2 16 7 7 10 16
024|135 3 64 10 10 10 37
025|134 3 64 10 10 10 37
034|125 3 64 10 10 10 37
035|124 3 64 10 10 10 37

Table 4.2: Ranks of flattenings and subflattenings on a particular 6-taxon
tree (T6) using the calculated site-pattern probability distribution (equiv-
alent to an infinite sequence length). Note that the rank here is calculated
based on a rank deficiency threshold, in particular the threshold used in
implementations of matrix rank functions in NumPy and MATLAB. The
‘Pars.’ column shows parsimony scores for each split (see Definition 2.2.6).
This table provides some small amount of evidence of the rank condition
given in Conjecture 4.3.8.
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used for simulations in this paper is not yet optimised for larger trees, we don’t
address this here. Regardless, we conjecture that the options for choices of r and
c are not fine-grained enough to be of use for this purpose.
Another concern is that that the rank properties of flattenings and subflattenings
may be inherently related to parsimony methods, which as discussed are known to
be biased. The generic rank conditions for subflattenings given in Theorem 2.6.3
can be stated in a more specific way, referencing the parsimony score of the split
in question [26]:
Theorem 4.4.1. Let T be a tree with site pattern probability distribution P . Let
A|B be a split. A subflattening matrix SubflS

A|B(P ) has rank k if A|B is displayed
by T , and rank r(k−1)+1 otherwise, where r is the parsimony score of the split
A|B.
Proof. See [26]. ■

The flattening rank property given in [11] is linked to parsimony score for splits
in a similar way, although parsimony score is not explicitly mentioned. Evidence
of this connection to parsimony is visible in Table 4.2, as well as in results from
our simulations in Chapter 5, where one can see that scores of splits are clearly
separated by the parsimony scores for the splits in question. The parsimony score
for the split in question has a much larger impact on the score than the balance
of the split.



Chapter 5

Simulations and Analysis

In this chapter, we discuss the simulations we have conducted and the analysis we
have undertaken in order to evaluate the performance of flattenings and subflat-
tenings. All the simulations and analyses detailed here were performed using the
Python programming language. Python packages utilised include Pandas, numpy
and SciPy. The python package which implements flattenings, subflattenings and
a number of other concepts explored in this thesis has been provided as open
source on GitHub1 along with the code written to perform all the simulations and
analyses detailed in this chapter. This package has been in development since
2018, with significant improvements made for its use in the work described here,
in terms of speed and efficiency as well as maintainability. It is hoped that the
software will further improve through continued development.
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Figure 5.1: Rooted and unrooted versions of the balanced trees used in
simulations. We refer to the 6-taxon tree as T6 and the 8-taxon tree as T8.
True splits are those corresponding to internal edges (see Definition 2.2.3).
For example, the true splits on T6 are 01|2345, 012|345 and 0123|45.

1https://github.com/js51/SplitP
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Figure 5.2: Trees used in simulations which are more difficult to infer. We
refer to the left tree as T6b and the right as T7. The difficulty in inferring
these trees correctly comes from the short internal branches compared to
the branches at the leaves. The difference in these branch lengths is larger
in T6b.

5.1 Simulations: Choices of S Matrix

The construction of subflattening matrices is dependent on a choice of matrix S, as
detailed in Definition 2.6.2 and in Chapter 4. As mentioned, the only requirement
for this matrix is that it transforms Markov matrices to matrices in the affine
group,

M
S7−→ SMS−1 =

[
T v
0 1

]
∈ Aff(k − 1).

The only properties required for this are that S is invertible with a constant row.
As mentioned in [26], it is not known whether different choices of matrix S will
have an effect in practice, or whether any choice of S is optimal. It was however
suggested that choosing S to be orthogonal may be appropriate. One possible
choice for S is the appropriately sized Hadamard matrix (Section 2.8). We began
our investigation into these choices of S with the Hadamard matrix, and scaled
versions of it. We include the additional constraint that S had a constant row
of ones however, and choose this row to be the final row, so as to align with the
assumptions of the alternate definition of the subflattening (Theorem 4.2.1).
For brevity, denote the 4× 4 Hadamard matrix

H =

[
1 −1
1 1

]
⊗
[
1 −1
1 1

]
=


1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

 ,
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and our scaled Hadamard matrix,

H(λ) =


λ −λ −λ λ
λ λ −λ −λ
λ −λ λ −λ
1 1 1 1

 . (5.1)

We begin by simply plotting split scores (see Definition 2.7.1) against splits using
the flattening, and subflattenings constructed with some different S matrices, on
a balanced six-taxon tree (tree T6, see Figure 5.1). The initial matrices tested
included the standard Hadamard matrix, the standard Hadamard matrix scaled
by 1

2
(so as to make it orthogonal), the matrix H(2), and the identity matrix with

its last row replaced with a row of ones (which we call “Alt Identity”). The identity
matrix was also used as an invalid choice of the matrix S, for comparison purposes
(this matrix is not valid because of its lack of a constant row). Results of this initial
simulation are shown in Figure 5.3. It is clear from these results that different,
valid choices of the matrix S could lead to very different results. Keeping in mind
that the first three splits in Figure 5.3 are the true ones, the flattening and the
Hadamard based subflattening appeared to be the best choices here, since they
separated true splits from false ones fairly well. As expected, the invalid identity
matrix based subflattening was the worst performer, giving very low (good) scores
for some false splits, for example 0145|23.
Next, the same simulation was repeated with only flattenings and some subflat-
tenings using different values of λ in S = H(λ). Changing λ primarily affected
the higher-scoring splits, increasing their scores (see Figure 5.4). To simulate real
data, we used the calculated site-pattern probabilities to generate a table of em-
pirical probabilities by drawing from the corresponding multinomial distribution,
as is standard for generating sequence data [15, 26]. A ‘sequence length’ of 1000
saw similar results for subflattenings, whereas flattening scores for true splits ap-
peared to rise more dramatically (Figure 5.4). Performing the above simulations
on different trees gave similar results, with increased variance for the more difficult
trees.
The next step was to attempt to quantify the performance of a given matrix S,
so that a higher number of possible matrices could be compared more clearly. We
proposed that a good choice of matrix S might increase the separation between
scores for true splits and scores for false splits.
We considered the following measures:

• Performance measure 1: The absolute difference between the highest-scoring



5.1. SIMULATIONS: CHOICES OF S MATRIX 48

0
12

3
|45

0
1
|23

4
5

0
12
|34

5

0
14

5
|23

0
13
|24

5

0
2
|13

4
5

0
12

4
|35

0
12

5
|34

0
34

5
|12

0
14
|23

5

0
15
|23

4

0
45
|12

3

0
23
|14

5

0
13

4
|25

0
13

5
|24

0
24

5
|13

0
3
|12

4
5

0
4
|12

3
5

0
5
|12

3
4

0
23

4
|15

0
23

5
|14

0
24
|13

5

0
25
|13

4

0
34
|12

5

0
35
|12

4

Split

0.00

0.02

0.04

0.06

0.08

S
p

li
t

S
co

re

Flattening

λ = 1

λ = 2

λ = H/2

Alt Identity

Identity

Figure 5.3: Split scores for all splits on tree T6, varying the matrix S over
H (λ = 1), H(2) (λ = 2), 1

2
H (see Equation (5.1)), the identity matrix,

and the identity matrix with its bottom row replaced by a row of ones
(“Alt Identity”).

true-split and the lowest-scoring ‘false’ split (i.e; the minimum difference in
scores between the true splits and the false splits).

• Performance measure 2: the above measure divided by the difference in
score between the lowest-scoring split and the highest-scoring split.

We then performed simulations calculating the above measures for collections of
split-scores on a range of trees, for scaled H matrices S = H(λ), λ ∈ [−5, 5], in
steps of 0.25. We repeated this for λ ∈ [−20, 20] in steps of 1.
From the results shown in Figure 5.5 we can see that, assuming our performance
measures are indicative of real performance, selecting λ ≥ 3.5 or λ ≤ 1 is a
poor choice. Looking at the best performing scaling factor across both plots, we
suppose that based on these measures, somewhere between 2.75 and 3.5 may be
optimal choice for λ. Performing the same simulation on T8, T6b and T7 gave similar
results. Note that in this simulation, we computed scores for two scaling factors
very close to 0, in order to avoid errors appearing in the code at λ = 0. From
the subflattening definition given in Theorem 4.2.1, one can see that setting λ = 0
gives a subflattening with every entry equal to zero aside from a 1 in the bottom
right entry. That is, the rank of the subflattening will be exactly 1, regardless of
the split.
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Figure 5.4: Top: split scores for all splits on tree T6 for different scaled
Hadamard matrices (Equation (5.1)) using calculated site-pattern prob-
abilities (Section 2.4). Bottom: the same as above, but split scores are
calculated from empirical site-pattern probabilities drawn from a multino-
mial distribution (sequence length 1000). The four clear ‘steps’ correspond
to the parsimony scores for splits considered as a binary character on the
true tree (see Definition 2.2.6).
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Figure 5.5: Measures of performance on tree T6. Sequences were drawn
from a multinomial distribution (sequence length 1000), 1000 times. For
each draw, each one of the 22 subflattenings were constructed, and the
average of the split-scores are shown above. The error bars indicate sample
variance of the full list of 1000 scores for each scaling factor. The lower
two plots are over a larger range of λ values.

The next step was to attempt to determine whether the performance difference we
expect from Figure 5.5 is noticeable in practice.

5.2 Simulations: Eriksson’s SVD Algorithm

The next simulation performed involved running each of the subflattenings tested
so far through Eriksson’s SVD algorithm on simulated pattern probabilities, in
order to determine whether the previous results can be seen in practice. That is,
we wish to determine whether the improvement from scaling Hadamard matrices
is noticeable when using subflattenings for inference. We used the SVD algorithm
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Figure 5.6: Reconstructing tree T7 using subflattenings with differently
scaled S matrices. The percentage of correctly reconstructed trees is al-
most the same for subflattenings with λ = 1, 2 and 3.

as it is described in [11], but used the split score defined in [4], instead of using
singular values directly.
We selected a more ‘difficult’ tree (tree T7) as well as some particular values of λ
to test using the SVD algorithm. For each sequence length between 100 and 1000,
we drew empirical pattern probabilities 1000 times, each time recording which
of the subflattenings were able to correctly reconstruct the tree using the SVD
algorithm. The percentage of times the tree was correctly reconstructed by each
of the subflattenings, for each of the sequence lengths, is recorded in Figure 5.6.
The results in Figure 5.6 show that, using the SVD algorithm on tree T7, subflat-
tenings performed much better than flattenings at sequence lengths higher above
200, except when a high value of 10 was chosen for λ. Choosing λ to be less than 1
gave worse performing subflattenings, and the best choices appeared to be λ = 1, 2
or 3, with no noticeable performance difference between them.
We re-ran the simulation on a more difficult tree (tree T6b) with similar results
(see Figure 5.7).
Our next step was to run this simulation again on some more difficult trees. We
coded the four quartet trees with varying branch lengths shown in Figure 5.8. The
‘shorter’ branches were given substitution matrices with a substitution probability
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Figure 5.7: Reconstructing tree T6b using subflattenings with differently
scaled S matrices. The percentage of correctly reconstructed trees is al-
most the same for subflattenings with λ = 1, 2 and 3.

of 0.05, the substitution matrices for the remaining branches were the product of
several copies of the previous, giving a substitution probability of approx. 0.33
along those edges. The results of this simulation are shown in Figure 5.9.
From Figure 5.9, we see that subflattenings performed far better than flattenings
on quartet tree T4b, and that flattenings performed slightly better on tree T4d. This
indicates that compared to flattenings, subflattenings are somehow less susceptible
to being biased by long branch attraction, a term used to describe the tendency of
some inference methods mistakenly grouping together leaves with long branches,
despite the fact they are separated by an internal edge. The subflattening with
λ = 10 again performed poorly across all the quartet trees, and again we saw the
remaining subflattenings show similar performance. This time, the figure for T4d

showed some more separation between λ = 1, 2 and 3, with λ = 1 performing
slightly better.

5.3 Simulations: Generalised Subflattenings

We performed some simulations to help to verify the rank conditions of gener-
alised subflattenings, and to check their performance compared to flattenings and
standard (1, 1)-subflattenings.
First, we computed exact site-pattern probabilities on tree T6 and plotted split
scores for various generalised subflattenings for each split, in the same way we did
for subflattenings using scaled S matrices in Section 5.1. Results for T6 are shown
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Figure 5.8: Quartet Trees which we label T4a, T4b, T4c and T4d left-to-
right. The ‘shorter’ branches have a substitution probability of 0.05, the
remaining branches have substitution probabilities of approximately 0.33.
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Figure 5.9: Reconstructing quartet trees shown in Figure 5.8 with subflat-
tenings created using differently scaled S matrices. The figures correspond
to trees T4a, T4b, T4c and T4d respectively (reading left to right). Eriksson’s
SVD algorithm is used.
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in Figure 5.10. We saw that all the generalised subflattenings correctly gave low
scores for true splits, and higher scores for false splits. This is further evidence for
the validity of Conjecture 4.3.8. When empirical site-pattern probabilities were
used (sequence length 1000) the scores for true splits were ordered as one might
expect after looking at Figure 5.4, that is, the larger (r, c)-subflattenings gave
higher scores, but lower than the flattening. Testing generalised subflattenings on
other trees gave similar results.
Next, we repeated the simulation performed on quartet trees in Section 5.2, but
with generalised subflattenings instead of subflattenings with different S matrices.
Interestingly, we saw that the (2, 1)-subflattenings were negatively impacted by
long branch attraction to a degree similar to the flattenings, whereas the (1, 2)-
subflattenings were less impacted, correctly reconstructing the correct tree almost
as often as the standard subflattening. The results of this simulation are given in
Figure 5.11.
The next step was to compare split scores for different subflattenings and gener-
alised subflattenings on some real data sets.

5.4 Analysis: Real Data Sets

The analysis of flattenings and subflattenings concluded with the evaluation of
split scores from two data sets. On each of these data sets, we looked at the
scores for flattenings, (1, 2), (2, 1) and (2, 2) subflattenings, as well as subflattenings
constructed using matrices S = H(λ), with λ ∈ {0.5, 3, 15}.
The first data set consisted of an alignment of 5 primate DNA sequences, with a
sequence length of 1 100 949. All the options we tested seemed to perform similarly,
identifying the same four splits as being more likely than others. Since the four
lowest scoring splits are incompatible, all we can say from this is that taxa 0 and
1 are clearly separated from the other taxa by an internal edge. In particular,
(1, 2) and (2, 1) subflattenings performed similarly to each other, as did the (2, 2)
subflattening and the flattening, which is expected since at only 5 taxa the (2, 2)
subflattening is almost the same size as the flattening. Both of these pairs were
distinctly different from the (1, 1) subflattening, with scores roughly in the middle
of the other options. For scaled subflattenings, scaling by λ = 3 didn’t change
scores much from the subflattening, as we saw in previous simulations. Scaling by
λ = 0.5 or by λ = 15 seemed to yield similar results.
The next data set we looked at was a 4 taxa mosquito DNA sequence alignment,
with a sequence length of 24 141 782. Interestingly, this time the (1, 2) and (1, 1)
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Figure 5.10: Top: split scores for all splits on tree T6 using different
generalised subflattenings and exact site-pattern probabilities. Bottom:
the same as above, but split scores are calculated from empirical site-
pattern probabilities drawn from a multinomial distribution (sequence
length 1000).
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Figure 5.11: Reconstructing quartet trees shown in Figure 5.8 with gen-
eralised subflattenings. The figures correspond to trees T4a, T4b, T4c and
T4d respectively (reading left to right). Eriksson’s SVD algorithm is used.
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data set, using subflattenings with different S matrices, and generalised
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Figure 5.13: Split scores for each split on the mosquito DNA alignment
data set, using subflattenings with different S matrices, and generalised
subflattenings

subflattenings showed similar scores, and the (2, 1) subflattening scores were quite
different. The (2, 2) subflattening is not shown here, since for 4 taxa, it is simply
the transformed flattening for every split. For choices of λ, we saw that λ = 0.5
showed scores which were lower than the other scaling factors (which were fairly
similar to each other). The scores for all the subflattenings were very different
from the flattening scores.



Chapter 6

Conclusion

6.1 Discussion

Flattenings and subflattenings, and more generally split and rank based tools,
encompass some interesting algebraic and statistical ideas, and motivate methods
for phylogenetic inference. This work has provided an introduction to some of
these tools and methods, as well as new insight into related ideas through both
the development of some new definitions and results, and an analysis of these
ideas on simulated and real data sets. Here, we summarise the theoretical results
from the research undertaken, as well as the insight gained from simulations and
analyses conducted in the previous chapter.
In Chapter 3, we provided a new proof of the flattening rank theorem which is
more closely related to the proof of the subflattening rank theorem. It is hoped
that this new proof gives more insight into subflattening matrices themselves, and
how the entries of these matrices change under divergence events. The proof also
relies only on tools commonly used in phylogenetics to prove results concerning
trees and the general Markov model.
Chapter 4 provided a proof of an alternate definition of the subflattening. This
alternate construction is included in the software provided, alongside the original
implementation of the subflattening. This proof was followed by an effort to gen-
eralise subflattenings, which began with the identification of additional faithful
subrepresentations of ×m Aff(k − 1). The proof of the existence of these rep-
resentations was structured in a way that clearly motivates the definition of the
generalised subflattenings. Finally, we conjecture that the rank conditions of these
(r, c)-subflattenings generalises Theorem 2.6.3.
The simulations and analysis in Chapter 5 answer some questions about the per-
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formance of the various subflattening constructions, and also raises some new ones
(which we will discuss in Section 6.2). First, we have established that particular
choices of the matrix S lead to far superior performance compared to other valid
choices, while all of the valid choices we tested seem to be usable for inferring
phylogenies. On the trees we tested the appropriately sized Hadamard matrix ap-
peared to be the best choice for S, and while there was some evidence that scaling
this matrix by certain amounts could lead to improvements, this was not veri-
fied by our subsequent analysis. We saw that—on the particular trees we looked
at—tree reconstruction via Eriksson’s SVD algorithm proposed in [11] was much
more successful using subflattenings compared to flattenings, and we found some
evidence that suggests subflattenings are perhaps less impacted by the effect of
long branch attraction on quartets. Finally, we verified that on the trees and data
sets we used for our simulations and analysis, generalised subflattenings indeed
have similar properties to flattenings and subflattenings, and are therefore useful
for phylogenetic inference in a similar way.
Having discussed the new theoretical results which we have provided, as well as
the conclusions we have been able to draw from our practical analysis, we now
discuss the several avenues for future research in this area.

6.2 Further Questions and Future Research

This research motivates a number of questions relating to split and rank based
methods for phylogenetic inference, and helps bring to light a number of opportu-
nities for future research. Representative of the diversity of ideas in phylogenetics,
these questions require research from statistical, algebraic and biological points of
view.
First, more work can be done to systematically compare rank based tools—such as
flattenings and subflattenings—to other methods for phylogenetic inference. This
could include the implementation of some of the other SVD-based methods which
have been developed. Such research should also include further investigation into
the connection between these rank based methods and those concerning maximum
parsimony, and whether the use of these methods introduces the same biases in-
herent in the use of parsimony scores. It would also be beneficial to investigate
the viability of subflattenings as a secondary method for inference used alongside
other methods, for example maximum likelihood methods. It is worth consider-
ing whether or not flattenings, subflattenings and (r, c)-subflattenings could be
combined in order to reveal additional structure within the true phylogenetic tree.
Another opportunity for future work is to continue the investigation into the pos-
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sible choices of matrix S in the construction of subflattenings. We have shown
that some choices are considerably more effective than others, and that Hadamard
matrices are perhaps the most viable choice. A theoretical understanding of why
Hadamard matrices seem to work well is yet to be developed.
There may be alternative methods for constructing generalised subflattenings which
are analogous to the construction of the subflattening which we proved in Sec-
tion 4.2. Attempting to identify and prove any such constructions is another
possible avenue for future work.
From a practical perspective, more work needs to be done to determine a fast, ef-
fective, unbiased and statistically consistent algorithm for utilising the properties
of flattenings and subflattenings for phylogenetic inference. From the literature, it
seems that SVD-based algorithms might be the best option, however more work
could be done to evaluate other ways of deciding how close a given matrix is to hav-
ing to a particular rank, for use with flattenings and subflattenings. Another part
of this work should involve identifying the most CPU and memory efficient process
for constructing flattenings and subflattenings. There are several opportunities to
improve upon the code developed for analysis conducted in this thesis1, including
the implementation of sparse matrix representations, and the replacement of the
current tree implementation with one that utilises an existing open-source package
such as NetworkX [23].

1https://github.com/js51/SplitP/

https://github.com/js51/SplitP/


Appendix A

Markov Models

Neyman 2-state Model (2-State-Symmetric) (N2):
M2SS =

{[
1−q q
q 1−q

]
: q ∈ [0, 1]

}
Jukes-Cantor (4-State-Symmetric) (JC69):

MJC69 =

{[ 1−3q q q q
q 1−3q q q
q q 1−3q q
q q q 1−3q

]
: q ∈ [0, 1]

}

Kimura’s Two Substitution Type Model (K2ST):

MK2ST =

{[
1−a−2b a b b

a 1−a−2b b b
b b 1−a−2b a
b b a 1−a−2b

]
: a, b ∈ [0, 1]

}

Kimura’s Three Substitution Type Model (K3ST):

MK3ST =

{[
1−a−b−c a b c

a 1−a−b−c c b
b c 1−a−b−c a
c b a 1−a−b−c

]
: a, b, c ∈ [0, 1]

}

General Markov Model (GMM):

MGMM =


 1−

∑
j a0,j a0,1 a0,2 a0,3

a1,1 1−
∑

j a1,j a1,2 a1,3

a2,1 a2,2 1−
∑

j a2,j a2,3

a3,1 a3,2 a3,3 1−
∑

j a3,j

 : ai,j ∈ [0, 1]


Note that MJC69,MK2ST ,MK3ST ⊂ MGMM .
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Appendix B

Subflattening Example

Consider the following flattening matrix for split 12|34 on a 4-taxon tree, with
binary state-space.


p0000 p0001 p0010 p0011
p0100 p0101 p0110 p0111
p1000 p1001 p1010 p1011
p1100 p1101 p1110 p1111



The corresponding subflattening obtained by choosing matrix S =
[
λ −λ
1 1

]
:

 λ2 (p0000+p0001−p0010−p0011+p0100+p0101−p0110−p0111−p1000−p1001+p1010+p1011−p1100−p1101+p1110+p1111)

λ2 (p0000+p0001−p0010−p0011−p0100−p0101+p0110+p0111+p1000+p1001−p1010−p1011−p1100−p1101+p1110+p1111)
λ (p0000+p0001−p0010−p0011+p0100+p0101−p0110−p0111+p1000+p1001−p1010−p1011+p1100+p1101−p1110−p1111)

λ2 (p0000−p0001+p0010−p0011+p0100−p0101+p0110−p0111−p1000+p1001−p1010+p1011−p1100+p1101−p1110+p1111)

λ2 (p0000−p0001+p0010−p0011−p0100+p0101−p0110+p0111+p1000−p1001+p1010−p1011−p1100+p1101−p1110+p1111)
λ (p0000−p0001+p0010−p0011+p0100−p0101+p0110−p0111+p1000−p1001+p1010−p1011+p1100−p1101+p1110−p1111)

λ (p0000+p0001+p0010+p0011+p0100+p0101+p0110+p0111−p1000−p1001−p1010−p1011−p1100−p1101−p1110−p1111)
λ (p0000+p0001+p0010+p0011−p0100−p0101−p0110−p0111+p1000+p1001+p1010+p1011−p1100−p1101−p1110−p1111)

p0000+p0001+p0010+p0011+p0100+p0101+p0110+p0111+p1000+p1001+p1010+p1011+p1100+p1101+p1110+p1111
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